Skip to main content
guest
Join
|
Help
|
Sign In
xenharmonic (microtonal wiki)
Home
guest
|
Join
|
Help
|
Sign In
Actions
Wiki Home
Projects
Recent Changes
Pages and Files
Members
Navigation
Introduction
Help
(
Conventions
)
Languages
Deutsch
English
Español
日本語
Connect
XA Facebook Group
XA IRC Chat
Practice
Instruments
Software
Pedagogy
Listen
Scores
Discussion
People
Projects
Theory
Orientation
General Theory
Mathematical Theory
Useful Tools
Lists and Galleries
Backing up this wiki
Temperaments for MOS shapes
Edit
0
30
…
1
Tags
todo:link
Notify
RSS
Backlinks
Source
Print
Export (PDF)
Below are listed temperaments of least TE complexity which result in a particular MOS shape, where "results in" is taken to mean that the POTE tuning has that shape.
7edo
5-limit
1L6s <<3 5 1|| porcupine 250/243
2L5s <<1 -3 -7|| mavila 135/128
3L4s <<2 1 -3|| dicot 25/24
4L3s <<5 6 -2|| sixix 3125/2916
5L2s <<1 4 4|| meantone 81/80
6L1s <<3 -2 -10|| enipucrop 1125/1024
7-limit patent
1L6s <<3 5 1 1 -7 -12|| hystrix {36/35, 160/147}
2L5s <<1 -3 -2 -7 -6 4|| {15/14, 64/63}
3L4s <<2 1 -4 -3 -12 -12|| dichotic {25/24, 64/63}
4L3s <<2 1 3 -3 -1 4|| dicot {15/14, 25/24}
5L2s <<1 4 -2 4 -6 -16|| dominant {36/35, 64/63}
6L1s <<3 -2 1 -10 -7 8|| {15/14, 256/245}
7d
1L6s <<3 5 2 1 -5 -9|| oxygen {21/20, 175/162}
2L5s <<1 -3 -4 -7 -9 -1|| pelogic {21/20, 135/128}
3L4s <<2 1 6 -3 4 11|| sharp {25/24, 28/27}
4L3s <<2 1 -1 -3 -7 -5|| flat {21/20, 25/24}
5L2s <<1 4 3 4 2 -4|| sharptone {21/20, 28/27}
6L1s <<4 2 5 -6 -3 6|| {25/24, 49/45}
8edo
5-limit
1L7s <<5 3 -7|| progression 3456/3125
2L6s <<2 6 5|| supersharp 800/729
3L5s <<7 9 -2|| sensi 78732/78125
4L4s <<4 4 -3|| diminished 648/625
5L3s <<1 -1 -4|| father 16/15
6L2s <<6 2 -11|| 18432/15625
7L1s <<3 5 1|| porcupine 250/243
7-limit 8d
1L7s <<5 3 7 -7 -3 8|| progression {36/35, 392/375}
2L6s <<2 -2 -2 -8 -9 1|| walid {16/15, 50/49}
3L5s <<1 -1 -5 -4 -11 -9|| pater {16/15, 126/125}
4L4s <<4 4 4 -3 -5 -2|| diminished {36/35, 50/49}
5L3s <<1 -1 3 -4 2 10|| father {16/15, 28/27}
6L2s <<6 2 2 -11 -14 -1|| {50/49, 192/175}
7L1s <<3 5 1 1 -7 -12|| hystrix {36/35, 160/147}
9edo
5-limit
1L8s <<4 -3 -14|| negri 16875/16384
2L7s <<1 6 -7|| avila 729/640
3L6s <<3 0 -7|| augmented 128/125
4L5s <<7 6 -7|| 93312/78125
5L4s <<2 3 0|| bug 27/25
6L3s <<3 9 7|| 19683/16000
7L2s <<1 -3 -7|| mavila 135/128
8L1s <<5 3 -7|| progression 3456/3125
7-limit
1L8s <<4 -3 2 -14 -8 13|| negri {49/48, 225/224}
2L7s <<1 6 5 7 5 -5|| {21/20, 243/224}
3L6s <<3 0 6 -7 1 14|| august {36/35, 128/125}
4L5s <<7 6 8 -7 -7 2|| {36/35, 686/625}
5L4s <<2 3 1 0 -4 -6|| beep {21/20, 27/25}
6L3s <<3 9 6 7 1 -11|| {21/20, 729/686}
7L2s <<1 -3 -4 -7 -9 -1|| pelogic {21/20, 135/128}
8L1s <<5 3 7 -7 -3 8|| progression {36/35, 392/375}
10edo
5-limit
1L9s <<4 7 2|| 2500/2187
2L8s <<2 -4 -11|| srutal 2048/2025
3L7s <<2 11 13|| 204800/177147
4L6s <<14 12 -13|| 6103515625/4353564672
5L5s <<0 5 8|| blackwood 256/243
6L4s <<6 8 -1|| 15625/13122
7L3s <<2 1 -3|| dicot 25/24
8L2s <<2 6 5|| supersharp 800/729
9L1s <<4 -3 -14|| negri 16875/16384
7-limit
1L9s <<4 7 2 2 -8 -15|| {49/48, 175/162}
2L8s <<2 -4 -4 -11 -12 2|| pajara {50/49, 64/63}
3L7s <<2 11 6 13 4 -17|| {28/27, 2401/2400}
4L6s <<4 2 2 -6 -8 -1|| decimal {25/24, 49/48}
5L5s <<0 5 0 8 0 -14|| blacksmith {28/27, 49/48}
6L4s <<6 8 8 -1 -4 -4|| {50/49, 175/162}
7L3s <<2 1 6 -3 4 11|| sharp {25/24, 28/27}
8L2s <<2 6 6 5 4 -3|| octokaidecal {28/27, 50/49}
9L1s <<4 -3 2 -14 -8 13|| negri {49/48, 225/224}
11-limit
1L9s <<4 7 2 5 2 -8 -6 -15 -13 7|| {35/33, 49/48, 55/54}
2L8s <<2 -4 6 0 -11 4 -7 25 14 -21|| {28/27, 35/33, 128/121}
3L7s <<2 1 -4 -5 -3 -12 -15 -12 -15 0|| dichosis {25/24, 35/33, 64/63}
4l6s <<4 2 2 0 -6 -8 -14 -1 -7 -7|| decibel {25/24, 35/33, 49/48}
5L5s <<0 5 0 5 8 0 8 -14 -6 14|| ferrum {28/27, 35/33, 49/48}
6L4s <<6 8 8 10 -1 -4 -5 -4 -5 0|| {35/33, 50/49, 55/54}
7L3s <<2 1 6 5 -3 4 1 11 8 -7|| sharp {25/24, 28/27, 35/33}
8L2s <<2 6 6 10 5 4 9 -3 2 7|| {28/27, 35/33, 50/49}
9L1s <<4 -3 2 5 -14 -8 -6 13 22 7|| negri {45/44, 49/48, 56/55}
11edo
5-limit 11b
1L10s <<7 4 -10|| 82944/78125
2L9s <<3 8 6|| 8000/6561
3L8s <<10 1 -22|| 12582912/9765625
4L7s <<6 5 -6|| hanson 15625/15552
5L6s <<2 9 10|| 25600/19683
6L5s <<9 2 -18|| 2359296/1953125
7L4s <<5 6 -2|| sixix 3125/2916
8L3s <<1 10 14|| 81920/59049
9L2s <<8 3 -14|| 442368/390625
10L1s <<4 7 2|| 2500/2187
5-limit 11c
1L10s <<5 8 1|| ripple 6561/6250
2L9s <<1 -5 -10|| 1215/1024
3L8s <<4 13 11|| 1594323/1280000
4L7s <<9 10 -5|| 1953125/1889568
5L6s <<3 7 4|| laconic 2187/2000
6L5s <<8 15 5|| 14348907/12500000
7L4s <<13 12 -11|| 1220703125/1088391168
8L3s <<7 9 -2|| sensi 78732/78125
9L2s <<1 6 7|| avila 729/640
10L1s <<5 -14 -33|| 14946778125/8589934592
Javascript Required
You need to enable Javascript in your browser to edit pages.
help on how to format text
Help
·
About
·
Pricing
·
Privacy
·
Terms
·
Support
Contributions to https://xenharmonic.wikispaces.com/ are licensed under a
Creative Commons Attribution Share-Alike Non-Commercial 3.0 License
.
Portions not contributed by visitors are Copyright 2018 Tangient LLC
TES: The largest network of teachers in the world
Turn off "Getting Started"
Home
...
Loading...
7edo
5-limit
1L6s <<3 5 1|| porcupine 250/2432L5s <<1 -3 -7|| mavila 135/128
3L4s <<2 1 -3|| dicot 25/24
4L3s <<5 6 -2|| sixix 3125/2916
5L2s <<1 4 4|| meantone 81/80
6L1s <<3 -2 -10|| enipucrop 1125/1024
7-limit patent
1L6s <<3 5 1 1 -7 -12|| hystrix {36/35, 160/147}2L5s <<1 -3 -2 -7 -6 4|| {15/14, 64/63}
3L4s <<2 1 -4 -3 -12 -12|| dichotic {25/24, 64/63}
4L3s <<2 1 3 -3 -1 4|| dicot {15/14, 25/24}
5L2s <<1 4 -2 4 -6 -16|| dominant {36/35, 64/63}
6L1s <<3 -2 1 -10 -7 8|| {15/14, 256/245}
7d
1L6s <<3 5 2 1 -5 -9|| oxygen {21/20, 175/162}2L5s <<1 -3 -4 -7 -9 -1|| pelogic {21/20, 135/128}
3L4s <<2 1 6 -3 4 11|| sharp {25/24, 28/27}
4L3s <<2 1 -1 -3 -7 -5|| flat {21/20, 25/24}
5L2s <<1 4 3 4 2 -4|| sharptone {21/20, 28/27}
6L1s <<4 2 5 -6 -3 6|| {25/24, 49/45}
8edo
5-limit
1L7s <<5 3 -7|| progression 3456/31252L6s <<2 6 5|| supersharp 800/729
3L5s <<7 9 -2|| sensi 78732/78125
4L4s <<4 4 -3|| diminished 648/625
5L3s <<1 -1 -4|| father 16/15
6L2s <<6 2 -11|| 18432/15625
7L1s <<3 5 1|| porcupine 250/243
7-limit 8d
1L7s <<5 3 7 -7 -3 8|| progression {36/35, 392/375}2L6s <<2 -2 -2 -8 -9 1|| walid {16/15, 50/49}
3L5s <<1 -1 -5 -4 -11 -9|| pater {16/15, 126/125}
4L4s <<4 4 4 -3 -5 -2|| diminished {36/35, 50/49}
5L3s <<1 -1 3 -4 2 10|| father {16/15, 28/27}
6L2s <<6 2 2 -11 -14 -1|| {50/49, 192/175}
7L1s <<3 5 1 1 -7 -12|| hystrix {36/35, 160/147}
9edo
5-limit
1L8s <<4 -3 -14|| negri 16875/163842L7s <<1 6 -7|| avila 729/640
3L6s <<3 0 -7|| augmented 128/125
4L5s <<7 6 -7|| 93312/78125
5L4s <<2 3 0|| bug 27/25
6L3s <<3 9 7|| 19683/16000
7L2s <<1 -3 -7|| mavila 135/128
8L1s <<5 3 -7|| progression 3456/3125
7-limit
1L8s <<4 -3 2 -14 -8 13|| negri {49/48, 225/224}2L7s <<1 6 5 7 5 -5|| {21/20, 243/224}
3L6s <<3 0 6 -7 1 14|| august {36/35, 128/125}
4L5s <<7 6 8 -7 -7 2|| {36/35, 686/625}
5L4s <<2 3 1 0 -4 -6|| beep {21/20, 27/25}
6L3s <<3 9 6 7 1 -11|| {21/20, 729/686}
7L2s <<1 -3 -4 -7 -9 -1|| pelogic {21/20, 135/128}
8L1s <<5 3 7 -7 -3 8|| progression {36/35, 392/375}
10edo
5-limit
1L9s <<4 7 2|| 2500/21872L8s <<2 -4 -11|| srutal 2048/2025
3L7s <<2 11 13|| 204800/177147
4L6s <<14 12 -13|| 6103515625/4353564672
5L5s <<0 5 8|| blackwood 256/243
6L4s <<6 8 -1|| 15625/13122
7L3s <<2 1 -3|| dicot 25/24
8L2s <<2 6 5|| supersharp 800/729
9L1s <<4 -3 -14|| negri 16875/16384
7-limit
1L9s <<4 7 2 2 -8 -15|| {49/48, 175/162}2L8s <<2 -4 -4 -11 -12 2|| pajara {50/49, 64/63}
3L7s <<2 11 6 13 4 -17|| {28/27, 2401/2400}
4L6s <<4 2 2 -6 -8 -1|| decimal {25/24, 49/48}
5L5s <<0 5 0 8 0 -14|| blacksmith {28/27, 49/48}
6L4s <<6 8 8 -1 -4 -4|| {50/49, 175/162}
7L3s <<2 1 6 -3 4 11|| sharp {25/24, 28/27}
8L2s <<2 6 6 5 4 -3|| octokaidecal {28/27, 50/49}
9L1s <<4 -3 2 -14 -8 13|| negri {49/48, 225/224}
11-limit
1L9s <<4 7 2 5 2 -8 -6 -15 -13 7|| {35/33, 49/48, 55/54}2L8s <<2 -4 6 0 -11 4 -7 25 14 -21|| {28/27, 35/33, 128/121}
3L7s <<2 1 -4 -5 -3 -12 -15 -12 -15 0|| dichosis {25/24, 35/33, 64/63}
4l6s <<4 2 2 0 -6 -8 -14 -1 -7 -7|| decibel {25/24, 35/33, 49/48}
5L5s <<0 5 0 5 8 0 8 -14 -6 14|| ferrum {28/27, 35/33, 49/48}
6L4s <<6 8 8 10 -1 -4 -5 -4 -5 0|| {35/33, 50/49, 55/54}
7L3s <<2 1 6 5 -3 4 1 11 8 -7|| sharp {25/24, 28/27, 35/33}
8L2s <<2 6 6 10 5 4 9 -3 2 7|| {28/27, 35/33, 50/49}
9L1s <<4 -3 2 5 -14 -8 -6 13 22 7|| negri {45/44, 49/48, 56/55}
11edo
5-limit 11b
1L10s <<7 4 -10|| 82944/781252L9s <<3 8 6|| 8000/6561
3L8s <<10 1 -22|| 12582912/9765625
4L7s <<6 5 -6|| hanson 15625/15552
5L6s <<2 9 10|| 25600/19683
6L5s <<9 2 -18|| 2359296/1953125
7L4s <<5 6 -2|| sixix 3125/2916
8L3s <<1 10 14|| 81920/59049
9L2s <<8 3 -14|| 442368/390625
10L1s <<4 7 2|| 2500/2187
5-limit 11c
1L10s <<5 8 1|| ripple 6561/62502L9s <<1 -5 -10|| 1215/1024
3L8s <<4 13 11|| 1594323/1280000
4L7s <<9 10 -5|| 1953125/1889568
5L6s <<3 7 4|| laconic 2187/2000
6L5s <<8 15 5|| 14348907/12500000
7L4s <<13 12 -11|| 1220703125/1088391168
8L3s <<7 9 -2|| sensi 78732/78125
9L2s <<1 6 7|| avila 729/640
10L1s <<5 -14 -33|| 14946778125/8589934592